Max. Marks: 120 Time: 60 min.

GENERAL INSTRUCTIONS

 The Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

You have to evaluate your Response Grids yourself with the help of solution booklet.

Each correct answer will get you 4 marks and 1 mark shall be deduced for each incorrect answer. No mark will be given/ deducted
if no bubble is filled. Keep a timer in front of you and stop immediately at the end of 60 min.

The sheet follows a particular syllabus. Do not attempt the sheet before you have completed your preparation for that syllabus.
 Refer syllabus sheet in the starting of the book for the syllabus of all the DPP sheets.

After completing the sheet check your answers with the solution booklet and complete the Result Grid. Finally spend time to
analyse your performance and revise the areas which emerge out as weak in your evaluation.

DIRECTIONS (Q.1-Q.21): There are 21 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE choice is correct.

Q.1	Calculate the weight of CH4 in a 9 litre cylinder at 16a tm and
	27°C (R = 0.08 lit. aum/K).

(a) 96gm

(b) 86gm

(c) 80gm

(d) 90gin

Q.2 What is the density of sulphur dioxide (SO₂) at STP?

(a) 2.86 gm/lit

(b) 1.76 gm/lit

(c) 1.86gm/lit

(d) None of these

Q.3 What is the pressure of a mixture of 1g of dihydrogen and 1.4 g of dinitrogen stored in a 5 litre vessel at 127°C?

(a) 5.50 atm.

(b) 3.61 atm.

(c) 4.40atm.

(d) 4.50 atm.

Q.4 0.333 grams of alcohol displaced 171 c.c. of air measured over water at 15°C in a Victor Meyer apparatus. The barometric pressure was 773 torz. Calculate the molecular weight of alcohol - (Aqueous tension at 15°C = 13 torz.)

(a) 33.34 g/ mol.

(b) 28.80 g/ mol.

(c) 46.0 g/ mol.

(d) 13.0 g/mol.

Q.5 Atmospheric air contains 20% O₂ and 80% N₂ by volume and exerts a pressure of 760 mm. Calculate the partial pressure of each gas.

(a) 152 mm, 608 mm

(b) 608mm, 152mm

(c) 760mmboth

(d) Noncos these

Q.6	2.8 g of N_2 , 2.8 g CO, 4.4 g CO ₂ are found to exert a pressure of 700 torr. Find partial pressure of N_2 gas in the mixture.				Q.14 A gas occupies 3 litres at 32°C and one atmospheric pressure. What volume will it occupy if the temperature is changed to				
	3000	280.8 torr	(b)	233.3 torr	18%	C, the pressure remaining	ng cor	istant?	
	980000	300torr	(d)	None of these	(a)	2.91 litres	(b)	2.86 litres	
Q.7	Calculate the relative rates of diffusion of 235 UF ₆ and 238 UF ₆				(c)	2.30 litres	(d)	None of these	
8.Q	(a) (c) The	he gaseous state (At. m. 1.0043 : 1.0000 1.349 : 1.352 densities of CH ₄ and C ratio of rates of diffusi	(b) (d) 2 are	1.0000 : 1.0043 1.352 : 1.349 in the ratio 1 : 2. Calculate					
				배경 사람들 내용 내용 사람들이 하면 하면 하면 하면 하는 것이 되었다.	10.00				
Ω9	(a) 1,414 : 1 (b) 1: 1,414(c) 1.614 : 1 (d) 1,614; 1 Calculate the molecular weight of a gas which diffuses				- v	3.6 cm s ⁻¹	1887	4.6 cm s ⁻¹	
ų.,	through a porous plug at 1/6th of the speed of hydrogen under same conditions.				Q.16 Calculate average velocity and RMS velocity for a group of six particles having speeds 11.2, 9.0, 8.3, 6.5, 3.7 and 1.8 ms ⁻¹ .				
<u>۸.,</u>		i sa-contra to the same of the		72 (d) 63	(a)	6,75 ms ⁻¹ ,7,47 ms ⁻¹	(b)	7.47 ms ⁻¹ ,6.75 ms ⁻¹	
Q.10 The vapour density of gas A is thrice that of the gas B. If the molecular weight of B is M, then calculate the molecular					(c)	7.65 ms ⁻¹ ,8.47 ms ⁻¹	(d)	None of these	
	weight of A. (a) M (b) 3 M				Q.17 A gas occupies 300 ml at 27°C and 730 mm pressure. What would be its volume at STP?				
	(¢)	M/3	(d)	None of these	(a)	162.2 ml	(b)	262.2 ml	
Q.11	Q.11 3 moles of a gas are present in a vessel at a temperature of				(c)	362.2 ml	(d)	462.2 ml	
	 27°C. Calculate the value of gas constant (R) in terms of kinetic energy of the molecules of the gas. (a) 7.4 × 10⁻⁴ KE per degree kelvin. (b) 9.4 × 10⁻⁵ KE per degree kelvin. (c) 4.5 × 10⁻⁶ KE per degree kelvin. (d) None of these 					Q.18 A truck carrying oxygen cylinders is filled with oxygen at -23°C and at a pressure of 3 atm. in Srinagar, Kashmir. Determine the internal pressure when the truck drives through Madras, Tamil Nadu, where the temperature is 30°C. (a) 2.64 atm. (b) 1.64 atm.			
Q.12 Calculate average kinetic energy, in joules, of the molecules					100 500	l atm.	50000	3.64 atm.	
250 ASS		.0 g of methane at 27°C.					7,665		
	(a) (c)	8169.75 Joules 6189.57 Joules	(b)	1869,75 Joules 9186,57 Joules	Q.19The odour from a gas A takes 6 seconds to reach a wall from a given point. If the molecular weight of gas A is 46 grams per mole and the molecular weight of gas B is 64				
Q.13 A gas occupies a volume of 2.4 titres at a pressure of 740 mm of mercury. Keeping the temperature constant, calculate its volume at standard pressure.					grams per mole how long will it take for the odour from gas B to reach the same wall from the same point? Assuming that volume of both gases is same.				
	2002	2.4litres	(b)	2.34 litres	(a)	6 sec	(b)	7 sec	
	(c)	2.5 litres	(d)	None of these	(c)	8 sec	(d)	9 sec	

- Q.20 1 litre of dioxygen effuses through a small hole in 60 min. and a litre of helium at the same temperature and pressure effises through the same hole in 21.2 min. What is the atomic weight of helium?
 - (a) 2.99
- (b) 3.99
- (c) 2.08
- (d) 1.99
- Q.21 In the following diagram, container of NH3 gas and container of HCI gas, connected through a long tube, are opened simultaneously at both ends; the white NH_aCl ring first formed will be at Q point. If OP = 40 cm, then find OQ -

- (a) 35 cm
- (b) 23.74 cm (c) 30 cm (d) 31.25 cm

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following

codes:

Codes :

- (a) 1, 2 and 3 are correct
- (b) I and 2 are correct
- (c) 2 and 4 are correct
- (d) I and 3 are correct
- Q.22 If the pressure of the gas contained in a closed vessel is increased by 20% when heated by 273°C then it's initial temperature must have been
 - (1) 2184°C
- (2) 2457 K
- (3) 1365°C
- (4) 1029 K
- Q.23 There are three closed containers in which equal amount of the gas is tilled.

If the containers are placed at the same temperature, then find the correct options -

- (1) Pressure of the gas is minimum in (III) container
- (2) Pressure of the gas is maximum in (1)
- (3) The ratio of pressure in II and III containers is 4:3
- (4) Pressure of the gas is equal in I and II containers
- Q.24 If the rms velocities of nitrogen and oxygen molecules are same at two different temperatures and same pressures then-
 - (1) average speed of molecules is also same
 - (2) density (gm/litre) of nitrogen and oxygen is also equal
 - (3) most probable velocity of molecules is also equal
 - (4) number of moles of each gas is also equal

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows:

According to Dalton's law of partial pressure,

"When two or more gases, which do not react chemically are kept in a closed vessel, the total pressure exerted by the mixture is equal to the sum of the partial pressures of individual gases."

Thus,
$$P_{total} = P_1 + P_2 + P_3 + \dots$$

Where P1, P2, P3 are partial pressures of gases, number

Partial pressure is the pressure exerted by a gas when it is present alone in the same container and at the same temperature.

Partial pressure of a gas

- $(P_1) = \frac{\text{Number of moles of the gas } (n_1) \times P_{\text{Total}}}{\text{Total number of moles } (n) \text{ in the mixture}}$
 - = Mole fraction $(x_1) \times P_{\text{total}}$
- Q.25 A mixture of gases at 760 mm Hg pressure contains 65% nitrogen, 15% oxygen and 20% carbon dioxide by volume. What is the partial pressure of each in mm?
 - (a) 494, 114, 252
- (b) 494,224, 152
- (c) 494, 114, 152
- (d) Nonc of these

-DPP/ C (08)

- Q.26 0.45 gm of a gas 1 of molecular weight 60 and 0.22 gm of a gas 2 of molecular weight 44 exert a total pressure of 75 cm of mercury. Calculate the partial pressure of the gas 2 -
 - (a) 30 cm of Hg
- (b) 20 cm of Hg
- (c) 10 an of Hg
- (d) 40cm of Hg
- Q.27 The total pressure of a sample of methane collected over water is 735 torr at 29°C. The aqueous tension at 29°C is 30 torr. What is the pressure exerted by dry methane?
 - (a) 605 torr
- (b) 205 torr
- (c) 405torr
- (d) 705torr

DIRECTIONS (Q. 28-Q.30): Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

(a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement-I is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.
- Q.28 Statement 1 : Carbon dioxide has greater value of root mean square velocity $\mu_{\rm mis}$ than carbon monoxide.
 - Statement 2: μ_{mis} is inversely proportional to molar mass.
- Q.29 Statement 1: 1/4th of the gas is expelled in air present in an open vessel is heated from 27°C to 127°C.
 - Statement 2: Rate of diffusion of a gas is inversely proportional to the square root of its molecular mass.
- Q.30 Statement 1 : Efficient rate of dioxygen is smaller than that of dinitrogen.
 - Statement 2: Molecular size of nitrogen is smaller than oxygen.

(1) (a) Given P = 16 atm, V = 9 litre.

$$T = 300 \text{ K}$$
, $m_{CH_A} = 16$, $R = 0.08$ litre aun/K

$$PV = \frac{W}{W} \times R \times T$$

$$16 \times 9 = \frac{w}{16} \times 0.082 \times 300$$

w=96gm

(2) (a) The gram molecular weight of $SO_2 = 64$ gm/mole. Since 1 mole of SO_2 occupies a volume of 22.4 litres at

Density = mass / volume

$$\therefore$$
 Density of SO₂ at STP = $\frac{64}{22.4}$ = 2.86 gm/lit.

(3) **(b)** No. of moles of $H_2 = \frac{1}{2} = 0.5$

$$ne. of moles = \frac{mass}{molar mass}$$

No. of moles of $N_2 = \frac{1.4}{28} = 0.05$

 \therefore Total number of moles of gas (n) = 0.5 + 0.05 = 0.55 Using PV = nRT

$$P = \frac{nRT}{V} = \frac{...0.55 \times 0.0821 \times 400}{5} = 3.61 \text{ atm.}$$

(4) (c) $P_{\text{dry gas}} = 773 - 13 = 760 \text{torr} = \frac{760}{760} = 1 \text{ atm}$

using PV = nRT

$$1 \times \frac{171}{1000} = \frac{0.333}{M.\text{wt.}} \times 0.0821 \times 288$$

 $(:: 1 cc = 10^3 cm^3)$

M = 46 g. per mol.

(5) (a) Partial Pressure = Mole fraction × Total pressure = Vol. fraction × Total pressure

$$P_{O_2} = 0.2 \times 760 = 152 \text{ mm}$$

(6) (b) $P_{N_2} = Mole fraction \times P_{total}$

$$= \frac{2.8/28}{\frac{2.8}{28} + \frac{2.8}{44} + \frac{4.4}{44}} \times 100 = \frac{0.1}{0.3} \times 100$$

=233.3 Torr.

(7) (a) Mol. mass of ${}^{235}UF_6 = 235 + 6 \times 19 = 349$ Mol. mass ${}^{238}UF_6 = 238 + 6 \times 19 = 352$ From Graham's law of diffusion

$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}} = \sqrt{\frac{352}{349}} = 1.0043$$

r₁:r₂::1.0043:1.0000

(8) (b)
$$\frac{r_{O_2}}{r_{CH_4}} = \sqrt{\frac{d_{CH_4}}{d_{O_2}}} = \sqrt{\frac{1}{2}}$$

= 1:1.414

(9) (c) $\sqrt{\frac{M_{gas}}{M_{H_2}}}$ Rate of diffusion of H_2 Rate of diffusion of gas

$$\sqrt{\frac{M_{gas}}{2}} = \left(\frac{1}{1/6}\right)$$

or
$$M_{gas} = 2 \times 36 = 72$$

(10) (b) $\frac{VD_A}{VD_B} = \frac{M_A}{M_B} [::M = 2 \times VD]$

$$\therefore \frac{3}{1} = \frac{M_A}{M_B} = \frac{M_A}{M}$$

SoMol. wtof $A(M_A) = 3 M$

(11) (a) K.E. for 1 mole = $\frac{3}{2}$ RT

K.E. for 3 moles =
$$\frac{9}{2}$$
 RT

or
$$R = \frac{2}{9T} KE = \frac{2}{9(300)} KE$$

= 7.4×10^{-4} KE per degree kelvin.

(12) **(b)** Average KE = $\frac{3}{2}$ nRT = $\frac{3}{2} \times \frac{8}{16} \times 8.314 \times 300$ = 1869.75 Joules

(13) (b) Initial volume $(V_1) = 2.4L$,

Initial pressure $(P_1) = 740 \text{ num}$.

Final volume $(V_2) = ?$

Final pressure $(P_2) = 760 \text{ min.}$

From Boyle's law, $P_1V_1 = P_2V_2$

$$\therefore V_2 = \frac{740 \times 14}{760} = 2.34 \text{ litres.}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \text{ or } V_2 = \frac{V_1 T_2}{T_1}$$

$$\frac{3L}{(273 + 32) \text{ K}} = \frac{V_2}{(273 + 18) \text{ K}}$$
or $V_2 = \frac{3 \times 91}{305} = 2.86 \text{ litres}$

(15) (c) RMS velocity,
$$u = \sqrt{\frac{n_1 u_1^2 + n_2 u_2^2 + n_3 u_3^2 + \dots}{n}}$$

$$= \sqrt{\frac{4 \times 6)^2 + 5 \times 2^2 + n_0 \times 3^2}{19}}$$

$$= \sqrt{\frac{4 \times 6 + 5 \times 4 + n_0 \times 9}{19}}$$

(16) (a) Average velocity (v) is the average of different speeds of all the molecules

 $=\sqrt{\frac{254}{19}}$ = 3.6 cm s⁻¹

$$=\frac{40.5}{6}=6.75\,\mathrm{ms^{-1}}$$

Also, v = 0.921 u where 'u' is RMS velocity

$$\therefore$$
 RMS velocity(u) = $\frac{6.75}{0.9213}$ = 7.47 ms⁻¹

(17) **(b)**
$$T_1 = 300 \text{K}, T_2 = 273 \text{ K (STP)}$$

$$V_1 = 300 \,\text{ml} = \left(\frac{300}{1000}\right)^1 \text{lite},$$

$$P_1 = \left(\frac{730}{760}\right)^1 \text{ atm}; P_2 = 1 \text{ atm.}, \qquad V_2 = ?$$

using
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
,

$$\frac{730 \times 300}{760 \times 300} = \frac{1 \times \sqrt{2}}{273}$$

.. V₂=0.2622 litt c=262.2 ml.

(18) (d)
$$P_1 = 3 \text{ atm.}, P_2 = ?$$

 $T_1 = -23 + 273 = 250 \text{ K}$
 $T_2 = 273 + 30 = 303 \text{ K}.$

using
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

 $\frac{3}{250} = \frac{P_2}{303}$
 $P_2 = \frac{3 \times 903}{250} = 3.64 \text{ atm.}$

(19) (b) $\frac{r_A}{r_B} = \sqrt{\frac{M_B}{M_A}}$ (from Graham's law of diffusion)

$$\frac{r_A}{r_B} = \sqrt{\frac{64}{46}} = 1.18 \Rightarrow \frac{V_A/t_A}{V_B/t_B} = 1.18$$

Timetaken for the odour of B to reach the wall (t_B) = 1.18 × 6 = 7.08 sec \approx 7 sec.

(20) (h)
$$\frac{r_{O_2}}{r_{Hc}} = \frac{10(0)/60}{1000/21.2} = \frac{21.2}{60}$$
 $\left(\because r = \frac{v}{1}\right)$

$$= \sqrt{\frac{M_{He}}{M_{\odot_2}}} = \sqrt{\frac{M_{He}}{32}}$$

Squaring both of sides

$$\frac{(21.2)^2}{(60)^2} \frac{M_{He}}{32}$$

$$M_{He} = \frac{(21.2)^2 \times 32}{(60)^2} = 3.99$$

Since helium ismonoatomic so Atomic weight = Molecular weight = 3.99

(21) (b) Let OQ = x cm so QP = (40 - x) cm
Diffused volume of NH₃ gas
= A rea of T.S. of tube × Distance travelled by NH₃ gas

= Ax {where A is area of T.S. of tube}

Similarly in the same time,

Diffused volume of HCI gas

= Area of T.S. of tube × Distance travelled by HCI gas

 $V_{HC1} = A \times QP = A(40-x)$

From Graham's Law of diffusion

$$\Rightarrow \frac{r_{NH_3}}{r_{HC1}} = \sqrt{\frac{M_{HC1}}{M_{NH_3}}}$$

$$V_{NH_3/1} = \sqrt{\frac{36.5}{1000}}$$

$$\Rightarrow \frac{V_{\text{NH}_3/1}}{V_{\text{HCl/I}}} = \sqrt{\frac{36.5}{17}} = 1.46$$

$$\Rightarrow \frac{x}{(40\overline{x})} = 1.46$$

(22) **(b)** Using
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Let initial pressure = 1 atm

$$\frac{1}{1+273} = \frac{1.2}{t+273+546}$$

$$1.2t+273 \times 1.2 = t+273+546$$

$$\Rightarrow t = 2457 \text{K or } 2184^{\circ}\text{C}$$

(23) (a) n, T same hence
$$P = \frac{C_1}{V}$$
,
 $V_1 = 1000 \text{cm}^3$
 $V_2 = \pi (10)^2 \times 10 = 1000 \pi \text{cm}^3$
 $V_3 = \frac{4}{3} \pi (10)^3 = \frac{4}{3} \pi 1000 \text{ cm}^3$

.. Pressure of the gas is minimum in (III) container, pressure of the gas is maximum in (1),

The ratio of pressure in 11 and 111 container is 4:3

(24) (a)
$$(v_{rins})_{N_2} = (v_{rins})_{O_2}$$

$$\sqrt{\frac{3RT_{N_2}}{M_{N_2}}} = \sqrt{\frac{3RT_{O_2}}{M_{O_2}}} : \frac{T_{N_2}}{M_{N_2}} = \frac{T_{O_2}}{M_{O_2}}$$

Then v_{av} and v_{mps} is also same.

$$d_{N_2} = \frac{P_{N_2} M_{N_2}}{R T_{N_2}} \quad ; \quad d_{O_2} = \frac{P_{O_2} M_{O_2}}{R T_{O_2}}$$

(25) (c)
$$P'_{N_2} = 760 \times \frac{65}{100} = 494 \text{mm}$$

$$P'_{O_2} = 760 \times \frac{15}{100} = 114 \text{mm}$$

$$P'_{CO_2} = 760 \times \frac{20}{100} = 152 \text{ mm}.$$

(26) (a) No. of moles of gas
$$1 = n_1 = \frac{w_1}{m_1} = \frac{0.45}{60} = 0.0075$$

No. of moles of gas
$$2 = n_2 = \frac{w_2}{m_2} = \frac{...0.22}{44} = 0.0050$$

Total no. of moles =
$$n_1 + n_2$$

= 0.0075 + 0.0050 = 0.0125

P2 (partial pressure of gas 2)

$$= \frac{0.0050}{0.0125} \times 75 = 30 \text{ cm of Hg.}$$

(27) (d)
$$P_{\text{total}} = P_{\text{dry methane}} + P_{\text{water}}$$

 $735 = P_{\text{dry methane}} + 30$
 $\therefore P_{\text{dry methane}} = 735 - 30 = 705 \text{ torr.}$

(28) (c)
$$\mu_{mas} = \sqrt{\frac{3RT}{M}}$$
 i.e., it is inversely related to molecular mass.

Therefore,
$$H_{\text{mix}} | CO_1 > H_{\text{mix}} | CO_2_1$$
.

(29) (b) $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (Initial fraction $\frac{V_1}{V_2} = 1$ when temperature

is 27°C. At 127°C, the new fraction is $\frac{V_1}{V_2} = \frac{300}{400} = \frac{3}{4}$

$$\therefore$$
 air expelled $\rightarrow \frac{3}{4} = \frac{1}{4}$