1.	When a piece of wire of copper is dipped in $AgNO_3$ solution, the colour of the solution turns blue due to		9.	Oxidation number of S in Na_2SO_4 is [CPMT 1989]		
				(a) - 2	(b) + 2	
				(c) - 6	(d) + 6	
	[MP PMT 1992; JIPMER 2002] (a) Formation of soluble complex (b) Oxidation of copper		10.	A metal ion M^{3+} after loss of three electrons in a reaction will have an oxidation number equal to [CPMT 1980, 83, 84, 94, 99]		
	(c) Oxidation of silver			(a) Zero	(b) + 2	0. 1.01.000
	(d) Reduction of copper			(c) + 3	(d) + 6	
2.	HBr and HI can reduce H_2SO_4 , HCI can reduce		11.	Oxidation number of o	Oxidation number of oxygen in ozone (O_3) is	
	KMnO ₄ and HF can reduce [HT 1981]			[MP PET 2000; MP PMT 2001]		
	(a) H_2SO_4	(b) KMnO ₄		(a) + 3	(b) - 3	
	(c) $K_2Cr_2O_7$	(d) None of the above		(c) - 2	(d) o	
3.	Consider the following statements: In the chemical reaction		12.	The oxidation states		
				$SO_3^{2-}, S_2O_4^{2-}$ and $S_2O_6^{2-}$	follow the ord	er[CBSE PMT 2003]
	$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$			(a) $S_2O_6^{2-} < S_2O_4^2 < SO_3^{2-}$		
	(1) Manganese ion is oxidised (2) Manganese ion is reduced			(c) $SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (d) $S_2O_4^2 < S_2O_6^{2-} < SO_3^{2-}$		
	(3) Chloride ion is oxidised		13.	The oxidation number of hydrogen in LiH is		
	(4) Chloride ion is reduced.			(a) + 1	(b) - 1	
	기가 급하면 이번에 되었다. 그렇게 되었다면 보다 되었다. 이 기가 되었다.	nts are correct [NDA 1999]		(c) 2	(d) o	
	(a) 1 and 3 (b) 1 and 4 (c) 2 and 3 (d) 2 and 4		14.	Which of the following is not a redox reaction [RPMT 1999]		
4.	The oxide which cannot act as a reducing agent is			(a) $2Rb + 2H_2O \rightarrow 2RbO$	$H + H_2$	
	[CBSE PMT 1995; AIIMS 2000; JIPMER 2002; Kurukshetra CEE 2002]			(b) $2CuI_2 \rightarrow 2CuI + I_2$		
				(c) $2H_2O_2 \to 2H_2O + O_2$		
	(a) SO ₂	(b) NO ₂		(d) $4KCN + Fe(CN)_2 \rightarrow F$	$K_4 Fe(CN)_6$	
	(c) CO ₂	(d) ClO ₂	15.	Which of the following equations is a balanced		
5.	In the reaction between ozone and hydrogen peroxide, H_2O_2 acts as [RPET 2000] (a) Oxidising agent (b) Reducing agent (c) Bleaching agent (d) Both oxidising and bleaching agent The oxidation state of each oxygen atom in			one	-	
				[EAMCET 1980] (a) $5BiO_3^- + 22H^+ + Mn^{2+} \rightarrow 5Bi^{3+} + 7H_2O + MnO_4^-$		
				(b) $5BiO_3^- + 14H^+ + 2Mn^{2+} \rightarrow 5Bi^{3+} + 7H_2O + 2MnO_4^-$		
				(c) $2BiO_3^2 + 4H^+ + Mn^{2+} \rightarrow 2Bi^{3+} + 2H_2O + MnO_4^-$		
6.				(d) $6BiO_3^- + 12H^+ + 3Mn^{2+} \rightarrow 6Bi^{3+} + 6H_2O + 3MnO_4^-$		
v.	Na_2O_2 is				→6Bi +6H ₂	$O + 3MnO_4$
	[NCERT 1971]		16.	3		
	(a) - 2 each	(b) - 2 and zero		$4M + 8CN^- + 2H_2O + O_2$	$\rightarrow 4[M(CN)_2]^- +$	4 <i>0H</i> -
	(c) - 1 each	(d) None of the above		Identify the metal M		[AFMC 1998]
7.	The oxidation state of sulphur in SO_4^{2-} is			(a) Copper	(b) Iron	
20.50000	[Bihar MEE 1996]			(c) Gold	(d) Zinc	20.000.000.00 • 0100 Yearner
	(a) 4	(b) 2	17.	In alkaline conditi	PARTIE AND THE PROPERTY OF THE PARTIES.	reacts as
	(c) 6	(d) - 6		$2KMnO_4 + 2KOH \rightarrow 2K_2$		
8.	The charge on cobalt in $\left[Co(CN)_6\right]^{3-}$ is [CPMT 1985, 93]			equivalent weight of $KMnO_4$ would be (Atomic mass of $K = 39$, $Mn = 55$, $O = 16$) [MP PMT 2002]		
	(a) - 6	(b) - 3		(a) 158.0	(b) 79.0	FMI 2002]
	(c) + 3	(d) + 6		(c) 52.7	(d) 31.6	

- 18. In acidic medium, equivalent weight of $K_2Cr_2O_7$ (mol. wt. = M) is [AFMC 1988]
- (c) M/6
- (d) M/2

- (a) M/3
- (b) M/4

Answers and Solutions

(8ET -13)

- 1. (b) $2Ag^+ + Cu \rightarrow Cu^{++} + 2Ag^-$; $E''_{Ag^{++}Ag} > E''_{Cu^{++}Cu}$.
- 2. (d) F can be oxidised to F_2 only by electrolysis.
- (c) Because the oxidation state of chlorine is 4
 to 0 while Manganese ion is reduced because
 its oxidation state + 4 to + 2.
- 4. (c) CO2 is a acidic oxide.
- 5. (b) H_2O_2 acts as a reducing agent in the reaction between O_3 and H_2O_2 .
- 6. (c) In Na_2O_2 oxygen show 1 oxidation state.
- 7. (c) SO_4^{2-} $x-2\times 4=-2$ x=8-2=+6.
- 8. (c) In $[Co(CN)_6]^{3-}$ complex Co shows + 3 oxidation state.
- 9. (d) Na_2SO_4 $2 + x - 2 \times 4 = 0$ x = +6.
- 10. (d) $M^{3+} \rightarrow M^{6+} + 3e^-$. Thus the oxidation number of metal = +6.

- 11. (d) Molecule and free atoms show zero oxidation state O_3 is a molecule shows zero oxidation state.
- 12. (b) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$ Oxi. state of sulphur in $S_2O_4^{2-} = +3$ Oxi. state of sulphur in $SO_3^{2-} = +4$ Oxi state of sulphur in $S_2O_6^{2-} = +5$.
- 13. (b) LiH.
- 14. (d) In the reaction $4KCN + Fe(CN)_2 \rightarrow K_4Fe(CN)_6$, change in oxidation state is not taking place.
- 15. (b) $5BiO_3^- + 14H^+ + 2Mn^{2+} \rightarrow 5Bi^{3+} + 7H_2O + 2MnO_4^-$ is the balanced reaction.
- **16.** (c) $4Au + 8CN^- + 2H_2O + O_2 \rightarrow 4[Au(CN)_2]^- + 4OH^-$.
- 17. (a) $e^- + Mn^{7+} \rightarrow Mn^{6+}$: $E = \frac{M}{1}$.
- **18.** (c) $Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O$

Equivalent weight of $K_2Cr_2O_7$

$$=\frac{\text{Molecular Mass}}{6} = \frac{294.2}{6} = \frac{M}{6}$$
.