- Activation energy (E_a) and rate constants $(k_1 \text{ and } k_2)$ of a chemical reaction at two different temperatures $(T_1 \text{ and } T_2)$
 - (a) $\operatorname{In} \frac{k_2}{k_1} \cdot \cdot \cdot \frac{E_a}{R} = \frac{1}{T_1} \cdot \frac{1}{T_2}$
 - (b) $\ln \frac{k_2}{k_1} \cdot \cdot \cdot \frac{E_e}{R} \cdot \frac{1}{T_2} \cdot \frac{1}{T_1}$
 - (c) $\ln \frac{k_2}{k_1} \cdot \cdot \cdot \frac{E_a}{R} \cdot \frac{1}{T_2} \cdot \frac{1}{T_1}$
 - (d) $\ln \frac{k_1}{k_2} \cdot \frac{E_a}{R} \cdot \frac{1}{T_1} \cdot \frac{1}{T_2}$
- t can be taken as the time taken for the concentration of a

reactant to drop to $\frac{3}{4}$ of its initial value. If the rate constant for a first order reaction is k, the $\frac{t_1}{4}$ can be written as

(a) 0.75/k (b) 0.69/k (c) 0.29/k

The decomposition of ammonia on tungsten surface at 500 K follows zero order kinetics. The half-life period of this reaction is 45 minutes when the initial pressure is 4 bar. The half-life period (minutes) of the reaction when the initial pressure is 16 bar at the same temperature is

(b) 60 (d) 180 (c) 240 25. In a 1st order reaction, reactant concentration C varies with

- (a) $\frac{1}{C}$ increases linearly with t
- (b) log C decreases linearly with t
- (c) C decreases with $\frac{1}{2}$
- (d) $\log C$ decreases with $\frac{1}{I}$
- 26. For a reaction A → Product, a plot of log l_{1/2} versus log a is shown in the figure. If the initial concentration of A is represented by a, the order of the reaction is

- (a) one (b) zero (c) two (d) three

 27. The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about :
 - (a) 10times (b) 24times (c) 32times (d) 64times
- 28. For a first order reaction 10.75 is 1368 seconds, therefore, the specific rate constant in sec-1 is (b) 10^{-2} (c) 10^{-9} (d) 10⁻⁵
- The integrated rate equation is $Rt = \log C_{\bullet} - \log C_{t}$

The straight line graph is obtained by plotting

- (a) timeVs logC,
- (b) $\frac{1}{\text{time}} \text{Vs}^{C_t}$
- (c) time Vs C,
- 30. The energies of activation for forward and reverse reactions for $A_2 + B_2 \rightleftharpoons 2AB$ are 180 kJ mol^{-1} and 200 kJ mol^{-1} respectively. The presence of a catalyst lowers the activation energy of both (forward and reverse) reactions by 100 kJ mol^{-1} . The enthalpy change of the reaction $(A_2 + B_2 \cdot 2AB)$ in the presence of a catalyst will be (in kJ mol^{-1}) (a) 20 (b) 300 (c) 120 (d) 280

The half-life period of a first order reaction is 15 minutes. The amount of substance left after one hour will be:

- $\frac{1}{4}$ of the original amount
- $\frac{1}{8}$ of the original amount
- (c) $\frac{1}{16}$ of the original amount
- (d) $\frac{1}{32}$ of the original amount
- Reaction rate between two substance A and B is expressed as following: $rat.e=k[A]^m[B]^m$

If the concentration of A is doubled and concentration of B is made half of initial concentration, the ratio of the new rate to the earlier rate will be:

- (a) m+n (b) n-m (c) $\frac{1}{2^{(m+n)}}$ (d) $2^{(n-m)}$ The reaction of ozone with oxygen atoms in the presence of
- chlorine atoms can occur by a two step process shown below:

$$O_3(g)+Cl^*(g) \rightarrow O_2(g)+ClO^*(g)$$
 ...(i)

$$[K_i = 5.2 \times 10^9 \text{ L mol}^{-1} \text{ s}^{-1}]$$
 $ClO^*(g)+O^*(g) \rightarrow O_2(g)+Cl^*(g)$...(ii)

$$[K_{ij} = 2.6 \times 10^{10} \text{ L mol}^{-1} \text{ s}^{-1}]$$

The closest rate constant for the overall reaction

- $O_3(g) + O^*(g) \rightarrow 2O_2(g)$ is: (a) $1.4 \times 10^{20} \, \text{L mol}^{-1} \, \text{s}^{-1}$ (b) $3.1 \times 10^{10} \, \text{L mol}^{-1} \, \text{s}^{-1}$ (c) $5.2 \times 10^9 \, \text{L mol}^{-1} \, \text{s}^{-1}$ (d) $2.6 \times 10^{10} \, \text{L mol}^{-1} \, \text{s}^{-1}$ The temperature dependence of rate constant (k) of a
- chemical reaction is written in terms of Arrhenius equation, $k = A \cdot e^{-E_a}$ Activation energy (E_a) of the reaction can be
 - calculated by plotting (a) k vs. $\frac{1}{\log T}$ (b) $\log k$ vs $\frac{1}{T}$
 - (c) $\log k$ vs. $\frac{1}{\log T}$ (d) k vs. T